Поверните устройство

Поверните устройство

Skip to main content

Теориясы: Бұрыштардың қосындысы мен айырмасының синусы, косинусы, тангенсі

Тапсырма

\(\displaystyle x\) және \(\displaystyle y\) бұрыштары үшін бұрыштардың қосындысы мен айырмасының синусы формуласын, бұрыштардың қосындысы мен айырмасының косинусы формуласын жазыңыз:                   

\(\displaystyle \sin(x+y)=\)
\sin(x)\cos(y)+\cos(x)\sin(y)
 
\(\displaystyle \sin(x-y)=\)
\sin(x)\cos(y)-\cos(x)\sin(y)
 
\(\displaystyle \cos(x+y)=\)
\cos(x) \cos(y)-\sin(x) \sin(y)
 
\(\displaystyle \cos(x-y)=\)
\cos(x)\cos(y)+\sin(x)\sin(y)
Шешім