Решите неравенство:
\(\displaystyle \frac{x^2-4x+4}{x^2-6x+9}\geqslant 0{\small .} \)
\(\displaystyle x \in \)
Найдем корни числителя \(\displaystyle x^2-4x+4 \) и знаменателя \(\displaystyle x^2-6x+9{\small : } \)
- решим уравнение \(\displaystyle x^2-4x+4=0{\small : } \)
- решим уравнение \(\displaystyle x^2-6x+9=0{\small : } \)
Поскольку знак неравенства нестрогий, то
- все нули числителя, которые не обращают в ноль знаменатель, обозначаются закрашенными;
- все нули знаменателя всегда обозначаются выколотыми.
Так как \(\displaystyle x=2 \) обращает в ноль числитель и не обращает в ноль знаменатель, то он обозначается закрашенным. Поскольку \(\displaystyle x=3\) обращает в ноль знаменатель, то он обозначается выколотым:
Получили три интервала:
\(\displaystyle (-\infty;2){ \small ,} \, (2;3)\) и \(\displaystyle (3;+\infty){\small .}\)
Определим знак функции \(\displaystyle f(x)=\frac{x^2-4x+4}{x^2-6x+9}\) на каждом из интервалов.
Для упрощения вычислений при нахождении знаков разложим числитель дроби на множители, используя найденные корни.
То есть
\(\displaystyle x^2-4x+4=(x-2)(x-2)=(x-2)^2{ \small ,}\)
\(\displaystyle x^2-6x+9=(x-3)(x-3)=(x-3)^2{\small .}\)
Перепишем исходное неравенство в виде
\(\displaystyle \frac{(x-2)^2}{(x-3)^2}\geqslant 0{\small .} \)
Определим знак функции \(\displaystyle f(x)=\frac{(x-2)^2}{(x-3)^2}\) на каждом из интервалов.
- Для интервала \(\displaystyle (-\infty;2)\) выберем \(\displaystyle x=0{\small :}\)\(\displaystyle f(0)=\frac{(0-2)^2}{(0-3)^2}>0{\small .}\)Пишем знак плюс в интервале \(\displaystyle (-\infty;2){\small .}\)
- Для интервала \(\displaystyle (2;3)\) выберем \(\displaystyle x=2{,}5{\small :}\)\(\displaystyle f(2{,}5)=\frac{(2{,}5-2)^2}{(2{,}5-3)^2}>0{\small .}\)Пишем знак плюс в интервале \(\displaystyle (2;3){\small .}\)
- Для интервала \(\displaystyle (3;+\infty)\) выберем \(\displaystyle x=5{\small :}\)\(\displaystyle f(5)=\frac{(5-2)^2}{(5-3)^2}>0{\small .}\)Пишем знак плюс в интервале \(\displaystyle (3;+\infty){\small .}\)
В итоге получаем:
Так как решения неравенства \(\displaystyle \frac{(x-2)^2}{(x-3)^2}\geqslant 0\) соответствуют промежуткам, где функция положительна, и включают граничные невыколотые точки, то
\(\displaystyle (-\infty;3)\cup(3;+\infty)\) – искомое решение.
Ответ: \(\displaystyle x \in (-\infty;3)\cup(3;+\infty){\small .}\)