Поверните устройство

Поверните устройство

Skip to main content

Теория: Построение графика квадратичной функции \(\displaystyle \small y=kx^{2}, k>0\)

Задание

Построение графика квадратичной функция \(\displaystyle y=2x^2\) на отрезке \(\displaystyle [-1; 1] \small .\)

Решение

Заполним таблицу значений квадратичной функции \(\displaystyle y=2x^2{\small :}\)

\(\displaystyle x\)\(\displaystyle -1\)\(\displaystyle -0{,}8\)\(\displaystyle -0{,}6\)\(\displaystyle -0{,}4\)\(\displaystyle -0{,}3\)\(\displaystyle 0\)\(\displaystyle 0{,}3\)\(\displaystyle 0{,}4\)\(\displaystyle 0{,}6\)\(\displaystyle 0{,}8\)\(\displaystyle 1\)
\(\displaystyle y=2x^2\)\(\displaystyle 2\cdot (-1)^2\)\(\displaystyle 2\cdot (-0{,}8)^2\)\(\displaystyle 2\cdot (-0{,}6)^2\)\(\displaystyle 2\cdot (-0{,}4)^2\)\(\displaystyle 2\cdot (-0{,}3)^2\)\(\displaystyle 0\)\(\displaystyle 2\cdot 0{,}3^2\)\(\displaystyle 2\cdot 0{,}4^2\)\(\displaystyle 2\cdot 0{,}6^2\)\(\displaystyle 2\cdot 0{,}8^2\)\(\displaystyle 2\cdot 1^2\)


Вычислим значения:

\(\displaystyle x\)\(\displaystyle -1\)\(\displaystyle -0{,}8\)\(\displaystyle -0{,}6\)\(\displaystyle -0{,}4\)\(\displaystyle -0{,}3\)\(\displaystyle 0\)\(\displaystyle 0{,}3\)\(\displaystyle 0{,}4\)\(\displaystyle 0{,}6\)\(\displaystyle 0{,}8\)\(\displaystyle 1\)
\(\displaystyle \small y=2x^2\)\(\displaystyle 2\)\(\displaystyle 1{,}28\)\(\displaystyle 0{,}72\)\(\displaystyle 0{,}32\)\(\displaystyle 0{,}18\)\(\displaystyle 0\)\(\displaystyle 0{,}18\)\(\displaystyle 0{,}32\)\(\displaystyle 0{,}72\)\(\displaystyle 1{,}28\)\(\displaystyle 2\)


Построим точки на плоскости:
 


Построим график квадратичной функции \(\displaystyle y=2x^2\) по полученным точкам, добавляя еще точки, если это необходимо:
 


Замечание / комментарий

Построение по точкам

Если построить по оси ОХ много точек с координатами от \(\displaystyle -1 \) до \(\displaystyle 1{\small , } \) то получаем следующую картинку графика: